
3D HEAD TRACKING AND VRML EDITOR FOR THE
RESPONSIVE WORKBENCH SYSTEM

by
Mahmud Re� id Çizmeci

Submitted to the Department of Computer Engineering
in partial fulfilment of the requirements

for the degree of
Bachelor of Science

in
Computer Engineering

Bo� aziçi University
June 2009

�

 �

���������

Project Name : Responsive Workbench System

Project Team : Mahmud Re� id Çizmeci

Term : 2008/09 II. Semester

Keywords : Visualizat�on, VRML, Head Tracking, 3D reconstruction, stereo viewing

Summary : First part of this document constructs the basic geometrical foundations for

images taken by stereo cameras. The geometrical relations are used in position
estimation of specific points. The system defined in this document is to be used in
head tracking system of Responsive Workbench. The rest of document includes
design detaild of VRML Editor designed for Responsive Workbench system.

�

 �

��	
�������������
1.� 3D Head Tracking .. 5�

1.1� Introduction .. 5�

1.2� Stereo Vision .. 6�

1.3� Geometry of System ... 8�

1.4� Geometrical Relations .. 10�

1.5� Testing .. 14�

1.6� Calibration .. 17�

1.7� Conclusion .. 18�

2.� VRML Editor ... 19�

2.1� Introduction .. 19�

2.1.1� Purpose of the System .. 19�

2.1.2� Scope of the System ... 19�

2.1.3� Objectives and Success Criteria ... 19�

2.1.4� Overview .. 20�

2.2� Proposed System .. 20�

2.2.1� Overview .. 20�

2.2.2� Functional Requirements .. 21�

2.2.2.1� VRML Viewer ... 21�

2.2.2.2� VRML Editor ... 21�

2.2.3� Non-Functional Requirements .. 22�

2.2.4� System Model ... 23�

2.2.4.1� Use Case .. 23�

2.2.4.2� Sequence diagrams .. 24�

2.2.4.3� State Diagrams ... 25�

2.2.4.4� Activity Diagrams .. 25�

2.2.4.4.1� Activity Diagram for Face Division ... 25�

2.2.4.4.2� Activity Diagram for Face Extrusion ... 26�

2.2.4.4.3� Activity Diagram for loading graphics object from VRML file 26�

2.2.4.4.4� Activity Diagram for poking face ... 26�

2.2.4.4.5� Activity Diagram for saving graphics object to VRML file 27�

2.2.4.4.6� Activity Diagram for translating face/vertex .. 27�

2.3� Design ... 27�

2.3.1� Analysis .. 27�

2.3.2� Class Diagram ... 29�

2.3.3� Class Definitions ... 30�

2.3.3.1� Controller Class ... 30�

2.3.3.2� Parser Class .. 31�

2.3.3.3� Camera Class ... 31�

2.3.3.4� SceneObject Class ... 31�

2.4� User Manual ... 32�

Glossary .. 38�

Bibliography ... 39

�� �����������������

��� �������������

The 3D Head tracking is an important part of Workbench system. Head tracking is used to detect

the position of a viewer’s head and viewer’s looking direction in 3D space. Head’s position is

expressed with a 3D coordinate. Looking direction is expressed as a vector in 3D space. These

parameters are going to be fed into Workbench system in order to create realistic rendering of a

scene according to the position of viewer.

To collect the tracking data, viewer wears a helmet on his/her head. At the top of helmet a plane

is fitted. And on top of the plane 3 LEDs are placed. 3 LEDs form a triangle in 3D space (Figure

1). Estimating the 3D coordinates of these LEDs can help us to calculate the needed parameters.

· Head’s location

· Looking direction

Head’s location can be computed from a weighted sum of LEDs positions. Moreover, looking

direction can be computed from a directed vector that extends from base of the triangle to the

front LED (Figure 1).

Figure 1

It is obvious that the bottleneck of this problem is the estimation of position of LEDs in 3D space.

We use a stereo camera to view the viewer. Using a stereo camera we are going to estimate the

position of LEDs. Before advancing to what is stereoscopy, we need to make sure why we use

LEDs in the system. An automated image processing tool must be used to detect the location of

head in an image. Color orange is not abundant in nature. Hence, tracking an orange lit LED in an

image is easier to implement. Basar Ugur implemented a system to track orange lit LED in an

image. Now it is time to explain what is stereo viewing and how we use it locate position of an

object.

��� ��������������

Stereo vision is viewing a scene from two different points of views. Humans by nature have

stereo vision. They have two eyes which are cameras and they take pictures of a scene from these

two cameras. And brain interprets these two images and calculates the depth information coming

from two eyes. Without stereo vision humans cannot perceive the 3D nature of environment

around them. Same idea is used in our system to calculate the positions of a specific point in 3D.

We use a stereo camera to take a picture of the viewer. Stereo camera has two different cameras

which are slightly offset. They take the snapshot of a scene simultaneously. Using the location of

an object in left camera’s snapshot and right camera’s snapshot, we determine a geometric

relation to find the 3D coordinate of the object relative to camera’s geometry.

The product we use is Point Grey Research Inc.’s Bumblebee 2 BB2-03S2 product (Figure 2).

Figure 2

To observe the notion of stereo camera and 3D reconstruction from two images taken by different

cameras, we can use the following example (Figure 3).

Figure 3

The images of the same scene are taken from slightly offset cameras simultaneously. The one on

the left is taken with the left camera and the one on the right is taken with right camera. We

define the telephone handle as a point in both images. Aleft refers to the image taken in left

camera and Aright is the telephone’s image on the right camera. If we were to use a ruler to

measure the distance of phone handle from left edge, in both images, we would see that phone

handle is farther away from left edge in left image than it is on the right image. This difference

which is also called the disparity tells something about the position of phone handle relative to

cameras’ positions.

To be exact disparity can be defined as the difference of a feature in two different images. If we

turn to our example disparity of the feature A is D(A) = x(A
left

) – x(A
right

) and the disparity of

point B is D(B) = x(B
left

) – x(B
right

), where function x gives the coordinate of a point in an image

in terms of pixels from the left edge. If we use the fact about disparity, we would end up with the

following relation D(A) > D(B). This tells us that point A is farther away from the camera than

point B. This fact is obvious to a human as our brain looks at it and deducts the same fact. This

fact is a starting point for setting up stereo cameras to make range measurements.

��� ��!���"����"���!

Now it is time to setup geometry of the stereo vi

depth from two cameras is called epipolar geometry (

of cameras, one can setup the geometry to estimate the position of point P.

In our case epipolar geometry reduces to a simpler model as two cameras are aligned and

calibrated by the company. Then the geometry further simplifies

parallel and coplanar (Figure 5

 ��!���"����"���! �

Now it is time to setup geometry of the stereo vision. General geometry used for calculating

depth from two cameras is called epipolar geometry (Figure 4). Knowing the relative orientation

s, one can setup the geometry to estimate the position of point P.

Figure 4

In our case epipolar geometry reduces to a simpler model as two cameras are aligned and

calibrated by the company. Then the geometry further simplifies as the camera planes become

5).

Figure 5

sion. General geometry used for calculating

). Knowing the relative orientation

In our case epipolar geometry reduces to a simpler model as two cameras are aligned and

as the camera planes become

The most critical part is to adopt one of the

models at hand. Due to its mathematical simplicity and our system’s calibration, we preferred to

use pinhole camera model to estimate the behavior of our cameras. In the pinhole camera model

each point in a scene is connected to camera centre

infinitesimally small. And the connecting line if ever cuts the image plane is projected to the

intersection of the line and image plane (

projection in graphics pipelines.

We can interpret pinhole camera model in a different way for beginners. A ray shot from camera

centre passes through infinitely many points on a scene. And the same ray cuts image plane at

exactly one point. In other words in pinhole camera model a point i

a ray in 3D. Hence a 3D coordinate is mapped to a 2D coordinate on image plane in terms of

pixels. Such a transformation cannot be represented by a full rank matrix. Hence inverse of this

operation cannot yield an exact value.

another constraint we use another camera which is slightly offset to the first one. The new image

gives us another possible set of solutions which is another ray in 3D space. The intersection of

these two lines in 3D space would produce a point in 3D space. Hence, we would solve the

problem of 3D reconstructing.

This method makes easier to understand the problem. However, it would require finding the

projection matrices of left and right camera. In

The most critical part is to adopt one of the camera models available. There are numerous camera

models at hand. Due to its mathematical simplicity and our system’s calibration, we preferred to

use pinhole camera model to estimate the behavior of our cameras. In the pinhole camera model

a scene is connected to camera centre - centre of projection -

infinitesimally small. And the connecting line if ever cuts the image plane is projected to the

intersection of the line and image plane (Figure 6). This notion is the same as perspective

projection in graphics pipelines.

Figure 6

We can interpret pinhole camera model in a different way for beginners. A ray shot from camera

centre passes through infinitely many points on a scene. And the same ray cuts image plane at

exactly one point. In other words in pinhole camera model a point in image plane corresponds for

a ray in 3D. Hence a 3D coordinate is mapped to a 2D coordinate on image plane in terms of

pixels. Such a transformation cannot be represented by a full rank matrix. Hence inverse of this

operation cannot yield an exact value. But rather it would return a set of values. To introduce

another constraint we use another camera which is slightly offset to the first one. The new image

gives us another possible set of solutions which is another ray in 3D space. The intersection of

se two lines in 3D space would produce a point in 3D space. Hence, we would solve the

problem of 3D reconstructing.

This method makes easier to understand the problem. However, it would require finding the

projection matrices of left and right camera. Instead of the matrix approach, a geometrical

camera models available. There are numerous camera

models at hand. Due to its mathematical simplicity and our system’s calibration, we preferred to

use pinhole camera model to estimate the behavior of our cameras. In the pinhole camera model

- which is theoretically

infinitesimally small. And the connecting line if ever cuts the image plane is projected to the

). This notion is the same as perspective

We can interpret pinhole camera model in a different way for beginners. A ray shot from camera

centre passes through infinitely many points on a scene. And the same ray cuts image plane at

n image plane corresponds for

a ray in 3D. Hence a 3D coordinate is mapped to a 2D coordinate on image plane in terms of

pixels. Such a transformation cannot be represented by a full rank matrix. Hence inverse of this

But rather it would return a set of values. To introduce

another constraint we use another camera which is slightly offset to the first one. The new image

gives us another possible set of solutions which is another ray in 3D space. The intersection of

se two lines in 3D space would produce a point in 3D space. Hence, we would solve the

This method makes easier to understand the problem. However, it would require finding the

stead of the matrix approach, a geometrical

approach would also yield the same answer. The geometrical approach would be as follows.

Point P in Figure 5 is projected on C1’s image as P1 and C2’s image as P2. C1 is first camera’s

centre and C2 is second camera’s centre. From the pinhole camera model we know, there are two

rays connecting P to each camera centre: C1P and C2P. Another line is C1C2 which is called the

baseline of the stereo camera. Three lines form a triangle in 3D space. Knowing the inner angles

and the length of baseline, one can determine C1P and C2P. Then in turn the position of point P

relative to the stereo camera is found out.

��# ��!������
���
�������

In (Figure 7) side view of the system is shown. Point A is the camera centre and point E is the

point which we want to recover its 3D coordinates. The baseline passes through the point A and it

is on the camera plane. The angle between baseline and AB segment is 90 degrees. First of all we

want to find the angle � . Angle � determines the plane which has the point E and baseline on it.

To find we use the following similarity.

�

Image Plane

c

Side View

A B

C

D

E

Camera Plane

Figure 7

tan
VFOW

2
ffffffffffffffffffffff

f g
=

height
2

ffffffffffffffffffffffff

l
ffffffffffffff fffff

tan a
` a

=
c
l
fff

Using the above equations we can eliminate l by dividing equations to each other. Then we have

the following equation. c is the vertical displacement of point E’s projection onto image plane

from the center of image plane. Using this displacement we can find the degree � .

a = arctan 2B
c

height
ffffffffffffffffffff

f g
B tan

VFOW
2

ffffffffffffffffffffff
f g

h

j

i

k

Before advancing we need to make sure what each variable stands for.

VFOW : Vertical Field of View

HFOW : Horizontal Field of View

height : image height in pixels

width : image width in pixels

CL

CR

� L

� R

baseline

Top View

m E

a

Figure 8

tan bL

b c
=

k
dL

fffffff=
c

dL B sin a
` afffffffffffffffffffffffffffffffffff

d is the horizontal displacement of point E’s projection onto image plane from the center of

image plane. Similarly

tan bR

b c
=

k
dR

ffffffff=
c

dRB sin a
` affffffffffffffffffffffffffffffffffff

Also, tan bL

b c
=

m
a
ffffff and tan bR

b c
»

m
a + basline
fffffffffffffffffffffffffffffffffff

When we divide both equations to each other, we get

tan bL

b c

tan b
R

b cffffffffffffffffffffffff = 1 +
baseline

a
fffffffffffffffffffff fffff

If we reorder the terms, we get the following equality for a and m

a =
baseline

tan b
L

b c

tan b
R

b c
ffffffffffffffffffffffffffffff @1

ffffffffffffffffffffffffffffffffffff

m = aB tan bL

b c

We can further divide m to its components with using � .

my = mB sin a
` a

mz = mB cos a
` a

And x component of the point E can be defined as

mx = a +
baseline

2
ffffffffffffffffffffffffff

The parameters to the system include VFOW, HFOW, width, height and baseline. These

parameters are found from Point Grey’s specifications sheet (Figure 9).

Figure 9

To derive VFOV from HFOV we used the following geometry.

 Figure 10

width/2

HFOW/2 VFOW/2

height/2

Top View Side View

l l

tan
HFOW

2
ffffffffffffffffffffffff

f g
=

width
2B l
ffffffffffffffffff

 tan
VFOW

2
ffffffffffffffffffffff

f g
=

height
2B l
ffffffffffffffffffff

Dividing both equations side by side gives us the following equality

VFOW= 2B arctan
height
width
ffffffffffffffffffff

f g
B tan

HFOW
2

ffffffffffffffffffffffff
f g

h

j

i

k

��$ ��������

To test the system we had taken stereo pictures from different angles. The ranges are comparable

to the real scenario. There are three different angels.

Image 1

Image 2

Image 3

Three points on the white plane are taken and distances are calculated accordingly. Real

parameters of the triangle are shown in Figure 11

Image 1

point xleft yleft xright yright

A 285 126 238 126

B 388 125 343 124

C 285 190 241 190

Figure 11

26,50 cm B

C

A

18,50 cm

32,32 cm

Image 2

point xleft yleft xright yright

A 83 184 35 184

B 182 150 134 150

C 101 255 53 255

Image 3

point xleft yleft xright yright

A 413 165 364 165

B 526 174 479 173

C 412 233 366 233

For these values the estimates using our model are as follows

Image 1

����� � ����� � ����� �

	 �
��� � ��

 � �����
 �

� � �
��
� � ����� � �
���� �

� �
���� �
���� � ��
��� �

Image 2

����� � ����� � ����� �

	 � ����� �
���� � ����� �

� � ����� � ����� � ����� �

� � ����� � ����� � ����� �

Image 3

����� � ����� � ����� �

	 � �
���� �
���� �
��� �

� � ������ �
��� � �����
 �

� � �
���� �
��� � �

�� �

Using these estimates for points, we calculate the estimates for distances between points.

	����� � ������ � 	����� �

�����
 � ����� � ���� � ���� �

������ � ���
� � ���
� �
���
 �

������ � �
��� � ����� � �
��� �

���������� � ����� � ����� �
���� �

��% ��
�	�������

To adopt the system we need to calibrate the coordinate systems. The equations above produce

coordinates in camera’s coordinate system. However, we need to transform it to workbench’s

coordinate system. The transformation matrix needs to be determined which satisfies the

following equation.

Tx = y

T is the transfromation matrix. x is a point in camera’s coordinate system whereas y is a point in

workbench’s coordinate system. To solve the following equation with the least possible error we

applied least squares fitting.

We took some known points in workbench’s coordinate system. Then we used our system to

determine their positions in camera’s coordinatre system. By taking more than necessary

observation we tried to minimize the noise in data. We took seven measurements in 3D. Then

applied the equations above to get points in camera’s coordinate system.

TX = Y

By taking transpoe of each side we get the following equation.

X`T` = Y`

The X` is 7x4 which is overdeterminant. By solving the using least squares method we get the

following equation for T`.

T` = (X * X`) -1 * X * Y`

��& ����
������

The estimates are acceptable as they do not differ from the real values drastically. The most

radical difference occurs at estimating distance AB using image 3. The estimate is 4,5 cm higher

than the real value. From the catalog data of Bumblebee Stereo Cam, company gives the

following graph.

Figure 12

At around 2,5 m we expect to have an accuracy of 2 cm. For a two point estimate this can be 4

cm. And our worst estimate is 4,5 cm. So the errors in our estimates are acceptable and tolerable.

Further improvements can be introduced by filtering and least squares methods.

Filtering can be used to get more realistic estimates for the pixel values of points. Least squares

methods can be used to decrease the error in detecting as we have other constraints at hand. We

already know the distance between LEDs. Hence, we can use them to decrease the error.

�� ��'(�)������

��� �������������

����� *��+�������,���"���!�

VRML is a very well known standard which enables people to stored graphics objects. It has a

wide acceptance in the graphics applications. Designing a tool for viewing and editing graphics

objects in VRML is the purpose of the system. Especially it is intended for future use in

workbench system of MediaLab. The system is to allow people to load graphics objects from

valid VRML files and to edit them easily and save them as valid graphics objects into valid

VRML files for later use.

����� ���+�����,���"���!�

The intended users of the system are any graphics people who would like to model graphics

objects. The integration of VRML editor to the workbench system are also potential users of the

system. But since the VRML editor is designed as a standalone application, it can be transferred

to any platform. Its simple design allows for any end user to use it.

The last VRML standard is VRML 2.0. So the VRML editor is designed to work with this

standard. However, it is also backwards compatible. It has no problem of dealing with VRML 1.0

standard files as well.

����� -	.����/������������������������

The main objective is to supply the users with an easy to use tool for editing graphics objects. So

being user friendly and presence of handy graphics operations on objects is an important factor of

the system.

Another important aspect to consider is portability. This will help many users from developers to

end users to integrate this system into their applications.

Last but not least, the system must be easily adaptable to other systems such as work bench

system. Also, it must work as a standalone application as well.

����# -/��/��0�

In this project a VRML editor and VRML viewer are to be designed and implemented. This will

let the users to view and edit graphics objects in VRML format. The system must be designed as

a standalone application. Also, the system must be easily adaptable into larger projects. Handy

operations on graphics objects are to be implemented.

�

��� *��+������"���!�

����� -/��/��0�

The code needs to be developed in C++ using object oriented approaches strictly. This is done to

create an easily adaptable product with object oriented methodology. In a likely scenario, a user

starts the program and can load objects from valid VRML files to a scene. The user should be

able to play with the camera position. Camera position determines the viewer’s eye in the scene.

Possible camera movements are zooming, rotating and tracking. Zooming gets the camera closer

or farther to the look at position. Rotating makes the camera turn around a fixed position. And

tracking enables camera to move within a plane in a scene. The last part is to supply an object

editing functionality. In the object editing, user can load an object from a VRML file. Then

he/she can edit the object by pulling or pushing faces or vertices. In addition to these, the user can

extrude a face in the direction of its normal. Also, the user can divide a face into two faces. Or the

user can poke a face to create new faces. The graphics pipeline to be used is OpenGL engine.

This allows for the software to work cross platform.

All of these functionalities must be supplied in a user friendly way. This requires any user from a

novel one to an experienced one to easily use the program. Therefore, the developer must take

this into account while developing application logic. Mouse events are preferred over keyboard

evens as they provide a better mean for graphical user interface. Moreover, the menus, if any,

should be designed in a user friendly way.

����� 1��������
���2����!�����

������� ������	
�
��

· ALT + Mouse Left: Horizontal movement - Tumble about Y

· ALT + Mouse Left: Vertical Movement - Tumble about X

· ALT + Mouse Middle: Horizontal Movement - Track in X

· ALT + Mouse Middle: Vertical Movement - Track in Y

· ALT + Mouse Right: Horizontal Movement - Zoom In/Out

· ALT + Mouse Right: Vertical Movement - Zoom In/Out

�

������� ������	����

· Load geometry from a vrml file

· Save an edited geometry to a vrml file

· Pull/Push a vertex in x direction

· Pull/Push a vertex in y direction

· Pull/Push a vertex in z direction

· Pull/Push a face in x direction

· Pull/Push a face in y direction

· Pull/Push a face in z direction

· Pull/Push a face in its normal’s direction

· Divide a face into new faces

· Extrude face

· Poke face

· Undo possibility

����� 3��41��������
���2����!�����

�

· The system must have a user friendly interface for the novice users.

· The system must catch user input exceptions.

· The system must respond to user requests promptly.

· The system must work cross platform.

· The system must be easily adaptable to larger project as well as working as a standalone

application.

����# �"���!�'���
�

������� ��
����
�

Figure 13

������� �
��
��
��	�������

Figure 14

������� ����
��	�������

Figure 15

������� ���	 	�!��	�������

��������� ���	
	����	�������������	
	�	���

Figure 16

��������� ���	
	����	������������������	���

Figure 17

��������� ���	
	����	�����������	�������	����� ���������! "#$��	���

Figure 18

��������� ���	
	����	����������%	�������

Figure 19

��������& ���	
	����	���������
	�������	����� �������!"#$ ��	���

Figure 20

��������' ���	
	����	��������������	������(
������

Figure 21

��� �������

����� ���
"����
As the requirements point out, the project consists of two main parts:

· Design a scene viewer

· Design object editor

To fulfill all of these parts we need to use a graphics library in C++. OpenGL is the right choice

for this one since it has a wider distribution in graphics applications than any other library.

Furthermore, it is dependable and consistent across many platforms. The library with is

predefined function can help us to realize requirements.

There are going to be a Controller class which is going to control the flow of event in the system.

It will also enable user interaction. Furthermore, it will be composed of the business logic.

Another class that we need is SceneObject class. This class will keep the geometry of a specific

object i.e. a pyramids, prism and so on. Another class is Camera class. This class handles the the

viewing options of the scene. It enables user to rotate, zoom and track in the scene. Last class that

we are going to implement is the Parser class. This is needed since the requirements require the

system save and load geometries to vrml files.

The VRML format is used to define geometries in a 3D fashion. The latest version is VRML 2.0

which enables the user to define an object in terms of IndexedFacesSet representation. The

structure keeps the face of a polyhedron and describes the geometry with polygons. Parser class

can parse a vrml and turn the definition of geometry into a SceneObject. In addition to these, it

can take a SceneObject and save it into a VRML file in the right format. The system also has a

main.cpp to initialize the system.

For the user interaction we are going to use GLUI which is a specific library for designing

graphical user interfaces in OpenGL application. The following Design section will describe the

design of system in further detail.

����� �
����������!�
�

�

Figure 22

����� �
���������������
�

������� ������""
���"����
�

�

Controller class, as its name suggests, controls the

main loop of the program. It handles user

interactions. It controls the GL engine.

It keeps a Parser, a Camera and a SceneObject. It

keeps states of mouse events with Boolean variables

pressedl, pressedm and pressedr. Grid and axis

variables determine the on/off status of grid and axis.

winWidth and winHeight keep the height and width

of user application.

keyboard() function handles keyboard events. init()

initializes all the variables necessary for the first

time. displayFunc() gives the GL engine the

commands to draw. processMouse() function

handles mouse events triggered by the user.

changeSize() is called when the user changes the size

of window. getWinHeight() and getWinWidth()

returns the height and width of the window

respectively. drawMainObject(), drawAxis() and drawGrid() execute GL functions to draw

main object, axis and grid respectively. setParams() and setMainObject() set the user defined

parameters and main object respectively. refresh() refreshes the GL buffer. saveObject() and

loadObject() saves the main object to VRML file and loads the main object from VRML file

respectively. resetPickedInstance() resets the picked instance, so no elements are chosen in

the scene. dopicking() and processHits() handle the user picking an element by clicking.

translate() translates an element on the scene. extrude() extrudes the face defined.

+keyboard() : void
+init() : void
+displayFunc() : void
+processMouseActiveMotion() : void
+processMouse() : void
+changeSize() : void
+getwinHeight() : unsigned int
+getwinWidth() : unsigned int
+drawMainObject() : void
+drawGrid() : void
+drawAxis() : void
+setParams() : void
+setMainObject() : void
+refresh() : void
+saveObject() : void
+loadObject() : void
+resetPickedInstance() : void
+doPicking() : int
+processHits() : int
+extrude() : void
+translate() : void
+divideFace() : void
+poke() : void
+returnPrevState() : void

-mainObject : SceneObject
-parser : Parser
-cam : Camera
-pressedl : bool
-pressedm : bool
-pressedr : bool
-pickedInstance : int
-obj : int
-type : int
-grid : bool
-axis : bool
-winWidth : unsigned int
-winHeight : unsigned int

Controller

divideFace() and poke() create new faces from existing ones. returnPrevState() realizes the

undo operation.

������� #���
���"����
�

Parser class handles the file operations needed. Controller class

constructs an instance of this class and uses it.

parseFile() parses a given file and extracts a graphics object

description with the given name. saveToFile() saves a graphics object to a given VRML file

with the specified geometry name. printFile() prints the specified file onto standard output.

�

������� ���
����"����
Camera class is used to define the point of view for rendering a

scene. By allowing user change the camera position, the user

can see the object in the scene from any angle.

winWidth and winHeight keeps the window width and height

respectively. Cx,Cy and Cz define the location of camera in 3D.

centerX, centerY and centerZ define the camera’s look at point.

up is the direction of up vector of camera. theta and phi define

the angles of the camera relative to planes.

setup() function initializes the camera for the first view.

tumble(), zoom() and track() allow the user to tumble, to zoom and to track camera

respectively. setHeightWidth() is used to change winWidth and winHeight variables.

�

������� ��
�
$%&
����"����
SceneObject is used to keep the graphics object definitions. It is used to simulate the graphics

objects. An instance of SceneObject is constructed from a given VRML file.

+parseFile() : bool
+saveToFile() : bool
+printFile() : bool

Parser

+setup() : void
+tumble() : void
+zoom() : void
+track() : void
+setHeightWidth() : void

-winWidth : unsigned int
-winHeight : unsigned int
-Cx : double
-Cy : double
-Cz : double
-centerX : double
-centerY : double
-centerZ : double
-radius : double
-up : float
-theta : float
-phi : float

Camera

Vertices keep the vertex coordinates of the object. indices keep

the order of vertices in a face. nofvertices keep the number of

vertices on each face. noffaces keep the number of faces of the

object. pickedFace is the currently chosen element of the object

to be edited.

setVertices() takes an array of vertices and assigns them the

vertices of the object. getVertices() returns the vertices of the

object to the caller. setIndices() sets the indices of the object to

the given array. getIndices() return the indices of the object.

getNofVertices() returns nofvertices of the object.

setPickedFace() sets the pickedFace of the object to the given

number. getNofFaces() return number of faces of the object.

getEdges() return the edges of a specified face. drawObject()

issues the GL engine command for drawing the object. normalize() scales the object so that it

fits into a 2x2 cube centered at the origin. findNumVertices() returns the number of vertices

of the object. getVertex() returns a specified vertex’s coordinates. setVertex() sets the

coordinates of a vertex to given value. getFace() returns the coordinate of center of a

specified face. getFaceNormal() returns the normal vector of a specified face. setFace() takes

a 3D point and makes it the specified face’s new center of mass. extrudeFace() creates new

faces for extrusion around the specified face. divideFace() divides the specified face

according to a plane. pokeFace() takes a point on the face and creates triangles from each

edge to the specified point.

��

��# 5����'����
�
�
In order to run the system, there are some requirements. First of all, user must open the

executables directory. glut32.dll must be in the environment variables to run the OpenGL

commands. Then within the directory user should click on the VRMLeditor.exe. Then the

application will start.

+setVertices() : void
+getVertices() : float
+setIndices() : void
+getIndices() : int
+getNofVertices() : int
+setPickedFace() : void
+getNofFaces() : int
+getEdges() : int
+drawObject() : void
+normalize() : void
+findNumVertices() : int
+getVertex() : int
+setVertex() : void
+getFace() : void
+getFaceNormal() : void
+setFace() : void
+extrudeFace() : void
+divideFace() : void
+pokeFace() : void

-vertices : float
-indices : int
-nofvertices : int
-noffaces : int
-pickedFace : int

SceneObject

Figure 23

When the system initiates, the main screen appears as the following.

Figure 24

By checking the checkboxes of grid and axis the user can enable or disable grid, axis.

Figure 25

Figure 26

To load geometry to edit, user must provide the vrml file and geometry’s name after pressing

load from file button.

Figure 27

At this stage the user can choose to translate a vertex or a face in any principle direction by

choosing the appropriate radio buttons. Then with the mouse translation can be completed.

Figure 28

For dividing a face user must choose divide face radio button. Then he must specify the face to

divide. Afterwards, he must give the direction of cutting plane.

Figure 29

To extrude a face in the direction of its normal, user must choose extrude face functionality. Then

he can choose any face and pull or push it.

Figure 30

To poke a face, user must specify a point on the face.

Figure 31

To save an edited object user must press save geometry button and specify a file name and

geometry name. Also, undo button takes back the lat action performed on the object. Delete

object deletes the existing geometry object from the scene. Quit button terminates the program.

Furthermore, user can use alt button and mouse combinations to change the parameters of the

camera any time.

�����"�

3D Three Dimensional

LED Light Emitting Diode

HFOV Horizontal Field of View

VFOV Vertical Field of View

VRML Virtual Reality Modeling Language

�

�
 �

��	
�����+,"�
 [1] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge
University Press, 2000.

[2] H. Baker, Computer Graphics with OpenGL, Pearson Prentice Hall, 2004.

