3D HEAD TRACKING AND VRML EDITOR FOR THE
RESPONSIVE WORKBENCH SYSTEM

by
Mahmud Reid Cizmeci

Submitted to the Department of Computer Engineering
in partial fulfilment of the requirements
for the degree of
Bachelor of Science
in
Computer Engineering

Bo azi¢i University
June 2009

Project Name : Responsive Workbench System

Project Team : Mahmud Reid Cizmeci

Term : 2008/09 Il. Semester

Keywords : Visualizat on, VRML, Head Tracking, 3D reconstioat stereo viewing

Summary : First part ofthis document constructs the basic geometricaldations for
images taken by stereo cameras. The geometriediored are used in position
estimation of specific points. The system definethis document is to be used in

head tracking system of Responsive Workbench. &steof document includes
design detaild of VRML Editor designed for RespoasiVorkbench system.

(O B N o [To B I 2= Tod (] o [OOSR P PP PPPPPPPPPRPP 5

0 A [1 (0 To (1 T 1o o PP PP P P TP UPPPPP 5
1.2 SEEIrE0 VISION ...t a e e eae e e nnnnnrnnne 6
1.3 Geometry Of SYSIEM ... 8
1.4 Geometrical REIALIONSccooiiiiiiiiiie e mmre e 10
L5 T OSHNG e 14
1.6 CaliBrationoooi oo s 17
1.7 CONCIUSION ..ttt £+ 442422222 e e e e e e e e e e et e e e e e eeeeeaeaeeeaaaanaaaaaaaaaaaaaaaans 18
2. VRML EQITOF ...ttt e e e e s e e e e e e e e e s 19
P2 R [170 o (U o1 1 o] o H PP PPPPPPPPP 19
2.1.1 Purpose Of the SYStEM ... e 19
2.1.2 SCOpPE Of the SYSIEM ...eeiiiiicccri e 19
2.1.3 Objectives and SUCCESS CIIterIaoirreeeaeeeieeeeeeeeeeeeeeeeeeee e eeeieeeees 19
2. 1.4 OVEIVIBW .ooiiieiiiiiiiie ettt ettt e ettt e e e e e e e et et e e e e e e e smmnne e e e e e e aan 20
2.2 PropoSed SYSIEM ... 20
2.2. 1 OVEIVIBW oottt et e ettt e e e e e e st e et e e e e e e smmnne e e e e e e aans 20
2.2.2 FUunCtional REQUIFEMENTSuuuuiiiiieeees e eeeeeeeeeeeeeeaeseaeseseaeseseeeseseeenenens 21
2.2.2.1 VRML VIBWET ...ttt ettt a et e e e e e e e e nmmnneas 21
2.2.2.2 VRML EQITOF ...ttt e e e e e e neeeeeeens 21
2.2.3 Non-Functional REQUIFEMENTS............uutt oo eeeeeeeeeeeeaee e ee e eeeeeeeeas 22
2.2.4 SYSIEM MOUEIcoeiiiiiiiiiieiieeee e 23
2.2.4.1 USE CASE ...ttt mmmmmm ettt e e et e a e a et e e e eanneeranaa 23
2.2.4.2 SequeNCE AIAgramMSccoiiiiiiiieieee s e es e e s aa e e e e e s e e e e e e e e e e e e e e e eeeans 24
2.2.4.3 State DiagramlS.....ccccoeiiiii ettt 25
2.2.4.4 ACHVILY DIAQIaMS.o e eeeeaeeeeessessssesssssessbenssnnsssnnnenes 25
2.2.4.4.1 Activity Diagram for Face DIVISIONc.coevueeeeiiiiiiiiiiiiiee 25
2.2.4.4.2 Activity Diagram for Face EXtrusSionccceceooieiiiiiiiiieeee 26
2.2.4.4.3 Activity Diagram for loading graphics object fronRWIL file 26
2.2.4.4.4 Activity Diagram for poKing facCe.............uccemvvrrivimmmimmmmminiiniiinnnnnns 26
2.2.4.4.5 Activity Diagram for saving graphics object to VRMile...................... 27
2.2.4.4.6 Activity Diagram for translating face/VerneX..........ccccccvevvevvivvveennennnne. 27
P2 T B =2 [0 [D PP TP TP PP PP URTUPRP 27

2.3.2 ClaSS DIBQIAM.....ccuiiiiiiiiiiiiitieeitettieeeeeeaaaeeeaeeeeeaeeeteeeteeeeeaeeeeeeeeeaeeanaaaaaaaaaaaans 29

2.3.3 Class DefiNItiONS......ccooeeiiieiie e s 30
2.3.3.1 CONtroller ClassScceuuuuiuiiiieeeieesimmmmmm e e e e e e e e e e eeeaaa e e e eeeeesssnnnnnsenes 30
2.3.3.2 ParSer ClasS.....cccoiiiiiiiiii s 31
2.3.3.3 CameEra ClassSuuuuiiiieeiieiiiiiiis e e e e e e e e e e e e e nnna————— 31
2.3.3.4 SCeNEODJECE ClasScceviiiiiiiiiiiee ettt 31

2.4 USEI MANUALeuiiiiiei e mmemme s s e e e e e e e e e e e s eneeees e 32
GlOSSANY ...ttt eemmmn et e ettt ettt Rt £ £ £ £ £ £ £ s 5 £ e £ s s st s tnnbtntnnnnnnnnnes 38
39

BIDlOGrapiyo

The 3D Head tracking is an important part of Workbencstey. Head tracking is used to detect
the position of a viewer’'s head and viewer’s logkiirection in 3D space. Head’s position is
expressed with a 3D coordinate. Looking directisrexpressed as a vector in 3D space. These
parameters are going to be fed into Workbench sygteorder to create realistic rendering of a

scene according to the position of viewer.

To collect the tracking data, viewer wears a helarehis/her head. At the top of helmet a plane
is fitted. And on top of the planelEDs are placed. 3 LEDs form a triangle in 3D spacgyfé

1). Estimating the 3D coordinates of these LEDstap us to calculate the needed parameters.

Head's location

Looking direction

Head'’s location can be computed from a weighted stildEDs positions. Moreover, looking
direction can be computed from a directed vectat #xtends from base of the triangle to the
front LED (Figure 1).

Figure 1

It is obvious that the bottleneck of this problesrthie estimation of position of LEDs in 3D space.
We use a stereo camera to view the viewer. Usisigi@o camera we are going to estimate the
position of LEDs. Before advancing to what is sbsmpy, we need to make sure why we use
LEDs in the system. An automated image processiagnust be used to detect the location of
head in an image. Color orange is not abundardtara. Hence, tracking an orange lit LED in an
image is easier to implement. Basar Ugur implenteatesystem to track orange lit LED in an
image. Now it is time to explain what is stereowirey and how we use it locate position of an

object.

Stereo vision is viewing a scene from two differpoints of views. Humans by nature have
stereo vision. They have two eyes which are canardghey take pictures of a scene from these
two cameras. And brain interprets these two imageiscalculates the depth information coming
from two eyes. Without stereo vision humans carpeteive the 3D nature of environment

around them. Same idea is used in our system ¢ales the positions of a specific point in 3D.

We use a stereo camera to take a picture of tiveevieStereo camera has two different cameras
which are slightly offset. They take the snapstia scene simultaneously. Using the location of
an object in left camera’s snapshot and right cafeesnapshot, we determine a geometric

relation to find the 3D coordinate of the objedatie to camera’s geometry.

The product we use is Point Grey Research Inc.imlBebee 2 BB2-03S2roduct (Figure 2).

Figure 2

To observe the notion of stereo camera and 3D stagartion from two images taken by different

cameras, we can use the following example (Figure 3

Figure 3

The images of the same scene are taken from sligfidet cameras simultaneously. The one on
the left is taken with the left camera and the onethe right is taken with right camera. We
define the telephone handle as a point in both @nadks refers to the image taken in left

camera and Ay is the telephone’s image on the right camera. df were to use a ruler to

measure the distance of phone handle from left,edgeoth images, we would see that phone
handle is farther away from left edge in left imdgan it is on the right image. This difference
which is also called the disparity tells somethaimput the position of phone handle relative to

cameras’ positions.

To be exact disparity can be defined as the diffegeof a feature in two different images. If we

turn to our example disparity of the feature A iADP= x(A,) — x(Arigm) and the disparity of

Ieft)

point B is D(B) = x(l?reﬂ) - x(Brigm), where function x gives the coordinate of a pamn&n image

in terms of pixels from the left edge. If we use thct about disparity, we would end up with the
following relation D(A) > D(B). This tells us thaint A is farther away from the camera than
point B. This fact is obvious to a human as ouirblaoks at it and deducts the same fact. This

fact is a starting point for setting up stereo caaséo make range measurements.

Now it is time to setup geometry of the steresion. General geometry used for calcula

depth from two cameras is called epipolar geomgFigure 4. Knowing the relative orientatic

of camera, one can setup the geometry to estimate theqosit point P

P
»

Figure 4

In our case epipolar geometry reduces to a simpledel as two cameras are aligned
calibrated by the company. Then the geometry furtimplifies as the camera planes becc

parallel and coplanar (FiguE.
s P
e

Figure 5

The most critical part is to adopt one of camera models available. There are numerous ce
models at hand. Due to its mathematical simpliaitgd our system’s calibration, we preferrec
use pinhole camera model to estimate the behaVviourocameras. In the pinhole camera mc
each point ira scene is connected to camera ce- centre of projectior which is theoretically
infinitesimally small. And the connecting line i@ cuts the image plane is projected to

intersection of the line and image plarFigure §. This notion is the same as perspec

projection in graphics pipeline
¥

Centre of projection facal length f

Figure 6

We can interpret pinhole camera model in a diffeveay for beginners. A ray shot from cam
centre passes through infinitely many points omens. And the same ray cuts image plar
exactly one point. In other words in pinhole camma@el a pointn image plane corresponds
a ray in 3D. Hence a 3D coordinate is mapped t® a@rdinate on image plane in terms
pixels. Such a transformation cannot be represdoyeal full rank matrix. Hence inverse of tl
operation cannot yield an exact va But rather it would return a set of values. To adiice
another constraint we use another camera whidrgigtly offset to the first one. The new ima
gives us another possible set of solutions whicainisther ray in 3D space. The intersectiol
these two lines in 3D space would produce a point Inspace. Hence, we would solve
problem of 3D reconstructin

This method makes easier to understand the proltawever, it would require finding tr

projection matrices of left and right camerastead of the matrix approach, a geomet

approach would also yield the same answer. The gemal approach would be as follows.
Point P in Figure 5 is projected on’€image as Pand G's image as P C, is first camera’s
centre and €is second camera’s centre. From the pinhole camedel we know, there are two
rays connecting P to each camera centi®. &d GP. Another line is €, which is called the
baseline of the stereo camera. Three lines forrrmagle in 3D space. Knowing the inner angles
and the length of baseline, one can determifie &d GP. Then in turn the position of point P

relative to the stereo camera is found out.

A B \ D

Camera Plane

Image Plane

Side View

Figure 7

In (Figure 7) side view of the system is shown.nPdi is the camera centre and point E is the
point which we want to recover its 3D coordinafBse baseline passes through the point A and it
is on the camera plane. The angle between baseithdB segment is 90 degrees. First of all we
want to find the angle. Angle determines the plane which has the point E andlibason it.

To find we use the following similarity.

f L
fffffffffffffftféfrf]fff\f/ E@Wﬁf{_ﬁf 2 fif
2 |

Using the above equations we can elimindig dividing equations to each other. Then we have
the following equationc is the vertical displacement of point E’'s projeantionto image plane

from the center of image plane. Using this dispiaeet we can find the degree

a =arctah B height B tan

A
2

Before advancing we need to make sure what eacibl@sstands for.

VFOW: Vertical Field of View
HFOW: Horizontal Field of View
height: image height in pixels
width : image width in pixels

_______________ mo . E

C. a:
[
[

I
ibaseline

Top View

Figure 8

D C m
tan b, ~d, dBsina

d is the horizontal displacement of point E’s prdi@e onto image plane from the center of

image plane. Similarly

C:*mm;

o}
tan by d; =dRBsin a

Also, tanb = M and tan b, » A
a a + basline
When we divide both equations to each other, we get

ffffffffffffffffffffffmg#ﬁéfgfﬁff_ﬁ@ase|ifw
tan b, a

If we reorder the terms, we get the following egydbr a andm

a= E o
nb
fffffffffffffffffffffffffffhlf’”‘ b LC @1
tan bR

m=aBtan b,

We can further divide m to its components with gsin

my,=mBsin a"

m,=mBcos a "

And x component of the point E can be defined as

i i

m,=a+ 2

The parameters to the system inclOW, HFOW, width, heightandbaseline These
parameters are found from Point Grey’s specificetisheet (Figure 9).

Bumblebee™ Specifications

Sory® 113" progressive scan CCD

Image Sensor Type 1CX424 (648408 max pixels) ICX204 (103776 rax pixels) X445 (1280960 max pixels)
T4yim square pixels 4.65um square pixels 3.750m square pixels
Baseline € T2an) 12 cmand 24em.
Focal Lengths 2.5 with 97° HEOV ar 2 8mm with 66° HEOV
A Conyerter 12-bieapalog-to-digtal converter .
White Balance Autornatic / Manual (Color model) Manual (Color modef)
Frame Rates 48PS 20EPS 16FPS
Infelfanes 6-pin IEEE-1394a for camera control and video data transmission 2% 9-pin IEEE-1394b for camera control and video data transmit
4 general-purpose digital Inputioutput (GPIO) pins 4 general-purpose digital iputfoutput (GPIO) pins
Voltags Requirements 832/ via EEE-1394 nterfce or GPIO comnector
Power Consumption 25Watl2v AW a 12V
Figure 9

To deriveVFOV from HFOV we used the following geometry.

HFOW/2 VFOW/2
width/2 height/2

Top View Side View

Figure 10

T .
an AR _ \arkekeim

2 ~ 2Bl
tan’mm?:mmm
2 2B |

Dividing both equations side by side gives us tiwing equality

"f . f '
VEOWS= 2B arctah mﬂg B tan "”Wk

To test the system we had taken stereo pictures ditferent angles. The ranges are comparable

to the real scenario. There are three differeneksng
. e

Image 2

Image 3

Three points on the white plane are taken and rdista are calculated accordingly. Real
parameters of the triangle are shown in Figure 11

A 26,50 cm B
18,50 cm
32,32 cm
C
Figure 11
Image 1
point Xeft Yieft Xright Yright
A 285 126 238 126
B 388 125 343 124
C 285 190 241 190

Image 2

point Xeft Yiett Xright Yright
A 83 184 35 184
B 182 150 134 150
C 101 255 53 255
Image 3

point Xeft Yieft Xright Yright
A 413 165 364 165
B 526 174 479 173
C 412 233 366 233

For these values the estimates using our modelsaf@lows

Image 1

Image 2

Image 3

Using these estimates for points, we calculatetitienates for distances between points.

%

To adopt the system we need to calibrate the coatelisystems. The equations above produce
coordinates in camera’s coordinate system. Howewverpeed to transform it to workbench’s
coordinate system. The transformation matrix netdd<e determined which satisfies the

following equation.

Tx=y
T is the transfromation matrix. x is a point in eais coordinate system whereas y is a point in
workbench’s coordinate system. To solve the follaywquation with the least possible error we
applied least squares fitting.
We took some known points in workbench’s coordirgtstem. Then we used our system to
determine their positions in camera’s coordinatystesm. By taking more than necessary
observation we tried to minimize the noise in date took seven measurements in 3D. Then
applied the equations above to get points in caimeoordinate system.

™X=Y

By taking transpoe of each side we get the follgrequation.

The X is 7x4 which is overdeterminant. By solvitig using least squares method we get the
following equation for T".

T =(X*X)M*X*Y

&

The estimates are acceptable as they do not diffen the real values drastically. The most
radical difference occurs at estimating distanceusBig image 3. The estimate is 4,5 cm higher
than the real value. From the catalog data of Bebd#® Stereo Cam, company gives the
following graph.

7.0
6.0
5.0
4.0

3.0

Accuracy (cm)

2.0
1.0

0.0
0.0 05 1.0 15 20 2.5 3.0 35 40 45

Range (m)

Figure 12

At around 2,5 m we expect to have an accuracy @h2For a two point estimate this can be 4
cm. And our worst estimate is 4,5 cm. So the efromur estimates are acceptable and tolerable.

Further improvements can be introduced by filtedngd least squares methods.

Filtering can be used to get more realistic es@®dor the pixel values of points. Least squares
methods can be used to decrease the error in idetest we have other constraints at hand. We

already know the distance between LEDs. Hence,anaise them to decrease the error.

()

VRML is a very well known standard which enablesgie to stored graphics objects. It has a
wide acceptance in the graphics applications. Désiga tool for viewing and editing graphics
objects in VRML is the purpose of the system. Egdlyat is intended for future use in
workbench system of MediaLab. The system is tonapjeople to load graphics objects from
valid VRML files and to edit them easily and sakierh as valid graphics objects into valid
VRML files for later use.

The intended users of the system are any grapbimsi@ who would like to model graphics
objects. The integration of VRML editor to the wbench system are also potential users of the
system. But since the VRML editor is designed ataadalone application, it can be transferred
to any platform. Its simple design allows for amgleiser to use it.

The last VRML standard is VRML 2.0. So the VRML tediis designed to work with this
standard. However, it is also backwards compatlblegas no problem of dealing with VRML 1.0
standard files as well.

The main objective is to supply the users with asydo use tool for editing graphics objects. So
being user friendly and presence of handy grappesations on objects is an important factor of
the system.

Another important aspect to consider is portahilltigis will help many users from developers to

end users to integrate this system into their appbns.

Last but not least, the system must be easily abépto other systems such as work bench

system. Also, it must work as a standalone apptinas well.

-110

In this project a VRML editor and VRML viewer are be designed and implemented. This will
let the users to view and edit graphics object¢RML format. The system must be designed as
a standalone application. Also, the system mustds#ly adaptable into larger projects. Handy

operations on graphics objects are to be implerdente

-110

The code needs to be developed in C++ using objeatited approaches strictly. This is done to
create an easily adaptable product with objectntek methodology. In a likely scenario, a user
starts the program and can load objects from WARML files to a scene. The user should be
able to play with the camera position. Camera posidetermines the viewer’s eye in the scene.
Possible camera movements are zooming, rotatingranking. Zooming gets the camera closer
or farther to the look at position. Rotating makies camera turn around a fixed position. And
tracking enables camera to move within a plane scene. The last part is to supply an object
editing functionality. In the object editing, usean load an object from a VRML file. Then
he/she can edit the object by pulling or pushirgg$aor vertices. In addition to these, the user can
extrude a face in the direction of its normal. Ald@ user can divide a face into two faces. Or the
user can poke a face to create new faces. The igsapipeline to be used is OpenGL engine.

This allows for the software to work cross platform

All of these functionalities must be supplied inser friendly way. This requires any user from a
novel one to an experienced one to easily use ithgrgm. Therefore, the developer must take

this into account while developing application lmgMouse events are preferred over keyboard

evens as they provide a better mean for graphieat unterface. Moreover, the menus, if any,

should be designed in a user friendly way.

ALT + Mouse Left: Horizontal movement - Tumble abdu
ALT + Mouse Left: Vertical Movement - Tumble aboxt
ALT + Mouse Middle: Horizontal Movement - Track it
ALT + Mouse Middle: Vertical Movement - Track in Y
ALT + Mouse Right: Horizontal Movement - Zoom In/Ou

ALT + Mouse Right: Vertical Movement - Zoom In/Out

Load geometry from a vrml file

Save an edited geometry to a vrml file
Pull/Push a vertex in x direction
Pull/Push a vertex in y direction
Pull/Push a vertex in z direction
Pull/Push a face in x direction

Pull/Push a face in y direction

Pull/Push a face in z direction

Pull/Push a face in its normal’s direction

Divide a face into new faces

Extrude face
Poke face

Undo possibility

341 2

The system must have a user friendly interfacéifemovice users.

The system must catch user input exceptions.

The system must respond to user requests promptly.

The system must work cross platform.

The system must be easily adaptable to larger girage well as working as a standalone

application.

VRML Editor

Navigate around scene

Load Object Definition from VRML file

Save Object Definition to VRML file

«wuses»

Translate Vertex in 3D

User o
Translate Face in its normal

nds»

«wuses»

Translate Face in 3D

Extrude Face

Figure 13

b

Initiate the system

E:
@

=

Controller

Load Object from VRML file

Translate vertex

SceneObject

Pars

er

Parse VRML file

Translate face

|

Save geometry data

Do picking

Translate picked vertex

Extrude face

\

Do picking

Translate picked face

Poke face

|

Do picking
Extrude picked face

Divide face

\

Do picking

Poke picked face

Determine plane

Save object in VRML format

V

Do picking

Divide picked face

_—_________________——__——__—7_____'______—__——___—___1'_________________________________ﬂ!'_

Save object to VRML file

L S

Get Object Data

|
i
1
Figure 14

Return object data

> Save data to specififed file

System started

/ Load Object / Delete

Object

Object loaded

| Edit object

Wait for user I/O

/ Take input from user

Object modified

/ Save object

Figure 15

> pICKIng

e

fDetermine the cutting pian%

Do intersection test

Figure 16

Do picking Create new face for each ed99

©< Translate face

Figure 17

! "#$

[not a valid VRML file]

g 4

[no indexedfaceset node]

——,

HTake Input from user)%’(Load file

N

N—

[valid VRML file]
Load indexedfaceset)ﬂ

[indexedfaceset node]

\
@tore geometry data to object J

Figure 18

%

Do picking User specifies a point on fac%

Figure 19

& I"#$

[object not defined]

-@

™ y
.—}(\ Take filename from user)—){ Take object dala) J—_—><
[object defined] , \
Save object to VRML file)
-~
Figure 20

Choose Face/Vertex Do picking %@alculate direction vecth

O Complete translation User dragging

Figure 21

As the requirements point out, the project consiktsvo main parts:

Design a scene viewer

Design object editor

To fulfill all of these parts we need to use a tuap library in C++. OpenGL is the right choice

for this one since it has a wider distribution iraghics applications than any other library.

Furthermore, it is dependable and consistent acroarsy platforms. The library with is

predefined function can help us to realize requaets.

There are going to be a Controller class whicloiagto control the flow of event in the system.
It will also enable user interaction. Furthermoirtewill be composed of the business logic.
Another class that we need is SceneObject clags.cldss will keep the geometry of a specific
object i.e. a pyramids, prism and so on. Anothas<lis Camera class. This class handles the the
viewing options of the scene. It enables user tatep zoom and track in the scene. Last class that
we are going to implement is the Parser class. iBhieeded since the requirements require the

system save and load geometries to vrml files.

The VRML format is used to define geometries inlaf8shion. The latest version is VRML 2.0

which enables the user to define an object in teoméndexedFacesSet representation. The
structure keeps the face of a polyhedron and de=scthe geometry with polygons. Parser class
can parse a vrml and turn the definition of geoynatto a SceneObject. In addition to these, it
can take a SceneObject and save it into a VRMLifiilehe right format. The system also has a

main.cpp to initialize the system.

For the user interaction we are going to use GLWictv is a specific library for designing
graphical user interfaces in OpenGL applicatione Td¢ilowing Design section will describe the

design of system in further detail.

Figure 22

Controller

-mainObject : SceneObject
-parser : Parser

-cam : Camera
-pressed| : bool
-pressedm : bool
-pressedr : bool
-pickedInstance : int

-obj :int

-type : int

-grid : bool

-axis : bool

-winWidth : unsigned int
-winHeight : unsigned int

+keyboard() : void

+init() : void

+displayFunc() : void
+processMouseActiveMotion() : void
+processMouse() : void
+changeSize() : void
+getwinHeight() : unsigned int
+getwinWidth() : unsigned int
+drawMainObject() : void
+drawGrid() : void
+drawAxis() : void
+setParams() : void
+setMainObject() : void
+refresh() : void
+saveObject() : void
+loadObject() : void
+resetPickedInstance() : void
+doPicking() : int
+processHits() : int
+extrude() : void

+translate() : void
+divideFace() : void

+poke() : void
+returnPrevState() : void

Controller class, as its name suggests, contrels th
main loop of the program. It handles user

interactions. It controls the GL engine.

It keeps &Parser, aCameraand aSceneObjectt

keeps states of mouse events with Boolean variables
pressedlpressednandpressedrGrid andaxis

variables determine the on/off status of grid axid.a
winWidthandwinHeightkeep the height and width

of user application.

keyboard()function handles keyboard everitst()
initializes all the variables necessary for thetfir

time. displayFunc()gives the GL engine the
commands to drawarocessMousefunction

handles mouse events triggered by the user.
changeSize(s called when the user changes the size
of window. getWinHeight() andetWinWidth()

returns the height and width of the window

respectivelydrawMainObject() drawAxis()anddrawGrid() execute GL functions to draw
main object, axis and grid respectivedgtParams(andsetMainObject(set the user defined
parameters and main object respectivedfresh()refreshes the GL buffesaveObject(and
loadObject()saves the main object to VRML file and loads the@mobject from VRML file

respectivelyresetPickedInstance(gsets the picked instance, so no elements asecho
the scenedopicking()andprocessHits(handle the user picking an element by clicking.

translate()translates an element on the scexérude()extrudes the face defined.

divideFace(Jandpoke()create new faces from existing oneturnPrevState(jealizes the

undo operation.
n

Parser class handles the file operations neededrdler class

Parser

constructs an instance of this class and uses it.

+parseFile() : bool
+saveToFile() : bool
+printFile() : bool

parseFile()parses a given file and extracts a graphics object
description with the given namsaveToFile(saves a graphics object to a given VRML file

with the specified geometry nangintFile() prints the specified file onto standard output.

Camera class is used to define the point of viewdndering a

Camera scene. By allowing user change the camera posttieniser

-winWidth : unsigned int ; :
winHeight : unsigned int can see the object in the scene from any angle.

-Cx : double
-Cy : double
-Cz : double
-centerX : double
-centerY : double

winWidthandwinHeightkeeps the window width and height

-centerZ : double respectivelyCx,Cy andCzdefine the location of camera in 3D.
-radius : double

P ﬂo?lt centerX centerYandcenterZdefine the camera’s look at point.
-theta : float

-phi : float upis the direction of up vector of cametiaetaandphi define
+setup() : void

+tumble() : void the angles of the camera relative to planes.

+zoom() : void
+track() : void
+setHeightWidth() : void

setup()function initializes the camera for the first view
tumble() zoom()andtrack() allow the user to tumble, to zoom and to track &am
respectivelysetHeightWidth()s used to changeinWidthandwinHeightvariables.

$%& "
SceneObject is used to keep the graphics objertiti@fs. It is used to simulate the graphics

objects. An instance of SceneObject is construitted a given VRML file.

SceneObject

-vertices : float
-indices : int
-nofvertices : int
-noffaces : int
-pickedFace : int

+setVertices() : void
+getVertices() : float
+setindices() : void
+getindices() : int
+getNofVertices() : int
+setPickedFace() : void
+getNofFaces() : int
+getEdges() : int
+drawObject() : void
+normalize() : void
+findNumVertices() : int
+getVertex() : int
+setVertex() : void
+getFace() : void
+getFaceNormal() : void
+setFace() : void
+extrudeFace() : void
+divideFace() : void
+pokeFace() : void

Vertices keep the vertex coordinates of the objedtceskeep

the order of vertices in a faasofverticeskeep the number of
vertices on each faceoffaceskeep the number of faces of the
object.pickedFaces the currently chosen element of the object
to be edited.

setVertices(Jakes an array of vertices and assigns them the
vertices of the objecgetVertices(yeturns the vertices of the
object to the callesetindices(kets the indices of the object to
the given arraygetindices(return the indices of the object.
getNofVertices(yeturnsnofverticesof the object.
setPickedFace($ets theickedFaceof the object to the given
number.getNofFaces(jeturn number of faces of the object.
getEdges(Jyeturn the edges of a specified fadeawODbject()

issues the GL engine command for drawing the oljecmalize()scales the object so that it

fits into a 2x2 cube centered at the origimdNumVertices(Jeturns the number of vertices

of the objectgetVertex(yeturns a specified vertex’s coordinatestVertex(pets the

coordinates of a vertex to given valgetFace()yeturns the coordinate of center of a

specified facegetFaceNormal(yeturns the normal vector of a specified fasstFace(takes

a 3D point and makes it the specified face’s nemtareof massextrudeFace(rreates new

faces for extrusion around the specified fatreideFace()divides the specified face

according to a plan@okeFace(}akes a point on the face and creates triangbes &ach

edge to the specified point.

5

In order to run the system, there are some reqeiésn First of all, user must open the
executables directory. glut32.dll must be in theimment variables to run the OpenGL
commands. Then within the directory user shouldkctn the VRMLeditor.exe. Then the

application will start.

Figure 23

When the system initiates, the main screen appeatse following.

Figure 24

By checking the checkboxes of grid and axis the cae enable or disable grid, axis.

Figure 25

Figure 26

To load geometry to edit, user must provide thelviile and geometry’s name after pressing

load from file button.

Figure 27

At this stage the user can choose to translaterteaxver a face in any principle direction by

choosing the appropriate radio buttons. Then vighrhouse translation can be completed.

Figure 28

For dividing a face user must choose divide fackorédutton. Then he must specify the face to

divide. Afterwards, he must give the direction afting plane.

Figure 29

To extrude a face in the direction of its normakmumust choose extrude face functionality. Then

he can choose any face and pull or push it.

Figure 30

To poke a face, user must specify a point on tbe.fa

Figure 31

To save an edited object user must press save ggométon and specify a file name and
geometry name. Also, undo button takes back thedtbn performed on the object. Delete
object deletes the existing geometry object from sbene. Quit button terminates the program

Furthermore, user can use alt button and mouse ioatitns to change the parameters of the
camera any time.

3D
LED
HFOV
VFOV
VRML

Three Dimensional

Light Emitting Diode

Horizontal Field of View

Vertical Field of View

Virtual Reality Modeling Language

+7||

[1] R. Hartley and A. ZissermaMultiple View Geometry in Computer Vision, Cambridge
University Press, 2000.

[2] H. Baker,Computer Graphics with OpenGL, Pearson Prentice Hall, 2004.

